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Abstract
The electronic energy band structure and linear optical properties of the
ferroelectric semiconductor SbSI in the paraelectric phase are calculated by an
ab initio pseudopotential method using density functional theory in the local
density approximation. The calculated electronic band structure shows that
SbSI has an indirect band gap of 1.45 eV and that the smallest direct gap is at
the S point of the Brillouin zone (1.56 eV). The total density of states has been
analysed. The linear energy dependent dielectric functions and some optical
constants such as the absorption coefficient, extinction coefficient, refractive
index, energy-loss function, reflectivity and optical conductivity, including self-
energy effects, are calculated. The effective number of valence electrons and
the effective optical dielectric constant are also calculated.

1. Introduction

Antimony sulfo-iodide (SbSI), as the most well known member of the group of AVBVICVII

(A = Sb, Bi, As; B = S, Se, O; C = I, Br, Cl) compounds, has been attractive for its
fundamental research interest and prospective applications in the fields of ferroelectricity,
microelectronics and optoelectronics, as microcapacitors, optical valves, and so on. According
to Dönges [1] the crystal structure of SbSI is orthorhombic. The point group of SbSI is mmm
(space group D16

2h) in the paraelectric phase above the Curie point and mm2 (space group C9
2v) in

the ferroelectric phase below the Curie point. Nitsche and Merz [2] have reported that SbSI is
a photoconductor with a maximum sensitivity at 6300–6400 Å. Fatuzzo et al [3] have reported
that SbSI is ferroelectric and its Curie point is 22 ◦C. The crystal structure of SbSI is shown
figure 1. This crystal has four SbSI molecules (12 atoms) in a unit cell. Each molecule of SbSI
extends in a chain-like fashion along the c-axis which is also the polarization axis. The atomic
positions in the unit cell are given in table 1.
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Figure 1. Schematic projection of the SbSI molecules on the xy-plane in the paraelectric phase.

Table 1. Atomic positions of each of the atoms in the unit cell of paraelectric SbSI [4].

Para. (35 ◦C)

α Xα Yα Zα

Sb 0.119 0.124 0.250
S 0.840 0.050 0.250
I 0.508 0.828 0.250

The band structure of SbSI has been investigated using semi-empirical [4], empirical [5],
and ab initio [6] pseudopotential methods. The band structure of SbSI was calculated for the
paraelectric and ferroelectric phases [4, 5] and also for the paraelectric phase [6]. The optical
properties of SbSI have been widely studied [4, 7–13] since the 1960s due to its semiconducting
and ferroelectric properties; however, there is no ab initio calculation of the optical properties
of SbSI in the literature.

In the present work, we have investigated and calculated the electronic band structure and
the linear optical properties of the paraelectric SbSI crystal using a pseudopotential method
based on the density functional theory (DFT) in the local density approximation (LDA) [14].
Firstly, the band structure and the total density of states (DOS) of paraelectric SbSI were
calculated. Then the linear frequency dependent optical dielectric functions including the
self-energy effects and some optical functions, the absorption coefficient, α(ω), extinction
coefficient, k(ω), refractive index, n(ω), energy-loss spectrum, L(ω), reflectivity, R(ω), optical
conductivity, σ(ω), effective number of valence electrons per unit cell, Neff(ω), and effective
optical dielectric function, εeff(ω), were calculated. In the calculations of the optical response,
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according to the band structure calculated by us, we have chosen a photon energy range of
0–16 eV and seen that a 0–8 eV photon energy range is sufficient for most optical functions.

2. Computational details

The self-consistent norm-conserving pseudopotentials were generated by using FHI98PP
code [15] with the Troullier–Martins scheme [16]. Plane waves were used as the basis set for
the electronic wavefunctions. In order to solve the Kohn–Sham equations [14], the conjugate
gradient minimization method [17] was employed in the ABINIT code [18]. The exchange–
correlation effects were taken into account within the Perdew–Wang (PW92) scheme [19] in
the LDA in the pseudopotential, the band structure and optical response calculations. For Sb
and I atoms 5s and 5p electrons, and for S atom 3s and 3p electrons were considered as the true
valence.

All the calculations involve a 12-atom orthorhombic unit cell. Good convergence for the
bulk total energy calculation has been achieved with the choice of cut-off energies at 12 Hartree
using a 4 × 4 × 4 Monkhorst–Pack [20] mesh grid. We have found that in the band structure
calculations 64 k points are enough for obtaining good results for SbSI. In the optical properties
calculations, however, the irreducible Brillouin zone (BZ) has been sampled with a 24×24×24
Monkhorst–Pack grid for SbSI.

It is well known that the effect of the electric field vector, E(ω), of the incoming light is to
polarize the material. At the level of linear response this polarization can be calculated using
the following relation [21]:

Pi (ω) = χ
(1)
i j (−ω,ω) · E j(ω), (1)

where χ
(1)
i j is the linear optical susceptibility tensor and it is given by [21, 22]

χ
(1)
i j (−ω,ω) = e2

h̄�

∑

nm�k
fnm(�k)

r i
nm(�k) r j

mn(�k)

ωmn(�k) − ω
= εi j(ω) − δi j

4π
(2)

where n, m denote energy bands, fmn(�k) ≡ fm(�k) − fn(�k) is the Fermi occupation factor, � is
the normalization volume. ωmn(�k) ≡ ωm(�k) − ωn(�k) are the frequency differences, h̄ωn(�k) is
the energy of band n at wavevector k. The �rnm are the matrix elements of the position operator
and are given by [22]

r i
nm(�k) = vi

nm(�k)

iωnm
; ωn �= ωm

r i
nm(�k) = 0; ωn = ωm

(3)

where vi
nm(�k) = m−1 pi

nm(�k), m is the free electron mass, and �pnm is the momentum matrix
element.

As can be seen from equation (2), the dielectric function εi j(ω) = 1+4πχ
(1)
i j (−ω,ω) and

the imaginary part of εi j(ω), ε
i j
2 (ω), is given by

ε
i j
2 (ω) = e2

h̄π

∑

nm

∫
d�k fnm(�k)

vi
nm(�k)v

j
mn(�k)

ω2
mn

δ(ω − ωmn(�k)). (4)

The real part of εi j(ω), ε
i j
1 (ω), can be obtained by using the Kramers–Kronig transformation:

ε
i j
1 (ω) − 1 = 2

π
℘

∫ ∞

0

ω′εi j
2 (ω′)

ω′2 − ω2
dω′. (5)
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Because the Kohn–Sham equations determine the ground state properties, the unoccupied
conduction bands as calculated have no physical significance. If they are used as single-particle
states in a calculation of optical properties for semiconductors, a band gap problem comes into
existence: the absorption starts at too low an energy [21]. The many-body effects must be
included in calculations of response. In order to take into account self-energy effects, in the
present work, we used the ‘scissors approximation’ [23].

Within the scissors approximation the Hamiltonian from which response functions are
calculated is given by

H̃ = H + Vs (6)

where

H = p2

2m
+ V (�r) − e �r · �E (7)

and

Vs = �
∑

c�k
|c�k〉 〈c�k| (8)

is the scissors operator [21]. In this expression the sum is over all k and conduction bands
c, � is the constant energy shift related to the correction of the band gap, and |c�k〉 denotes
single-particle eigenstates of the unperturbed Hamiltonian. In the framework of the scissors
approximation, equation (2) can be rewritten as follows:

χ
(1)
i j (−ω,ω) = e2

h̄�

∑

nm�k
fnm(�k)

r i
nm(�k) r j

mn(�k)

ωmn(�k) + �
h̄ (δmc − δnc) − ω

. (9)

The difference between equations (2) and (9) is only the modification of the frequencies ωmn ,
ωmn → �

h̄ (δmc − δnc). In the present work, �, the scissor shift to make the theoretical band
gap match the experimental one, is � = 0.66 eV.

Expressions for the absorption coefficient, α(ω), extinction coefficient, k(ω), refractive
index, n(ω), energy-loss spectrum, L(ω), reflectivity, R(ω), and optical conductivity, σ(ω),
are given as follows, respectively:

αii (ω) = 2ω

c
kii (ω),

kii (ω) =
{

1

2

[[
(Re εii(ω))2 + (Im εii (ω))2

]1/2 − Re εii (ω)
]}1/2

,

nii (ω) =
{

1

2

[[
(Re εii(ω))2 + (Im εii (ω))2

]1/2 + Re εii (ω)
]}1/2

,

Li j (ω) = − Im ε−1
i j (ω),

Rii (ω) = (nii − 1)2 + k2
ii

(nii + 1)2 + k2
ii

Re σi j (ω) = ω

4π
Im εi j(ω).

(10)

The known sum rules [24] can be used to determine some quantitative parameters,
particularly the effective number of the valence electrons per unit cell Neff, as well as the
effective optical dielectric constant εeff, which make a contribution to the optical constants of a
crystal at the energy E0. One can obtain an estimate of the distribution of oscillator strengths
for both intraband and interband transitions by computing the Neff(E0) defined according to

Neff(E) = 2mε0

π h̄2e2 Na

∫ E0

0
ε2(E)E dE, (11)
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Figure 2. The first Brillouin zone of the SbSI crystal.

where Na is the density of atoms in a crystal, e and m are the charge and mass of the electron,
respectively and Neff(E0) is the effective number of electrons contributing to optical transitions
below an energy of E0.

Further information on the role of the core and semi-core bands may be obtained by
computing the contribution which the various bands make to the static dielectric constant, ε0.
According to the Kramers–Kronig relations, one has

ε0(E) − 1 = 2

π

∫ ∞

0
ε2(E)E−1 dE . (12)

One can therefore define an ‘effective’ dielectric constant, which represents a different mean of
the interband transitions from that represented by the sum rule, equation (12), according to the
relation

εeff(E) − 1 = 2

π

∫ E0

0
ε2(E)E−1 dE. (13)

The physical meaning of εeff is quite clear: εeff is the effective optical dielectric constant
governed by the interband transitions in the energy range from zero to E0, i.e. by the
polarization of the electron shells.

3. Results and discussion

The notation for the high symmetry points between which we have drawn the band structure
corresponds to that chosen in [25] and the outcome is shown in figure 2. The calculated
band structure of SbSI in the paraelectric phase is presented in figure 3. We have observed
the presence of well separated groups of bands in the paraelectric phase. As previously
discussed [8, 26], the chemical bonding in SbSI has a mixed covalent–ionic character.
According to [26] the bond between antimony and sulfur atoms in the chain is covalent while
the iodine ion is in an ionic bond with a covalently bound bridge (SbS)+.
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Figure 3. Electronic band structure and the corresponding total density of states of paraelectric
SbSI (the atomic positions at 35 ◦C [4] are used in the calculations).

Figure 4. Real parts of the xx- and zz-components of the linear dielectric tensor in paraelectric
SbSI.

In figure 3, shown in the rightmost panel is the normalized total density of states (DOS)
for the SbSI crystal. The valence band is composed of 5s and 5p orbitals of the I atom, 3s and
3p orbitals of the S atom, and 5s orbitals of the Sb atom, while the conduction band consists of
5p orbitals of the Sb atom.

As can be seen in figure 3, the SbSI crystal has an indirect forbidden gap in the paraelectric
phase. The minimum of the conduction band is located at the S point of the BZ, 1.24 eV. The
maximum of the valence band is located at the T point of the BZ, −0.21 eV. The value of the
forbidden gap is 1.45 eV. Our results coincide with the data given in [4–8, 26]. The indirect gap,
Eg, increases from 1.45 eV (T → S) to 2.91 eV (Z → U). The direct band gap, Eg, increases
from 1.56 eV (at the S point) to 3.11 eV (at the U point).

Because of the orthorhombic crystal symmetry, the linear dielectric tensor of the SbSI
crystal has three independent components which are diagonal elements of the linear dielectric
tensor [27]. The calculated real parts of the xx- and zz-components of the linear frequency
dependent dielectric function are presented in figure 4. εxx

1 equals zero at about 3 eV (at the
A point in figure 4) and εzz

1 equals zero at about 5.9 eV and 6.9 eV (at the B and C points in
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Figure 5. Imaginary parts of the xx-and zz-components of the linear dielectric tensor in paraelectric
SbSI.

Table 2. Comparative characteristics of linear optical functions of paraelectric SbSI crystal (ab
initio calculation).

Peaks (eV)

ε2 A B C D E F G H I J K L

xx 1.98 2.56 3.00 3.13 3.25 3.56 3.84 4.48 5.54 5.85 6.24 7.58
zz 1.70 2.05 2.52 2.98 3.30 4.24 4.65 5.48 6.80 — — —

figure 4). The imaginary parts of the linear frequency dependent dielectric function along the
x- and z-directions are illustrated in figure 5. The values of the εxx

2 and εzz
2 peaks shown in

figure 5 are summarized in table 2. The peaks correspond to the transitions from the valence to
the conduction band (see figure 5).

The calculated energy-loss functions, − Im ε−1, are presented in figure 6. In this figure,
Lxx and Lzz correspond to the energy-loss functions along the x- and z-directions, respectively.
The function − Im ε−1 describes the energy loss of fast electrons traversing the material.
The sharp maxima in the energy-loss function are associated with the existence of plasma
oscillations [28]. The curve of Lxx in figure 6 has a maximum near 6.9 eV and this value
coincides with the C point in figure 4. The curve of Lzz in figure 6 has a maximum near
15.5 eV.

The calculated refractive indices and extinction coefficients along the x- and z-axes are
presented in figure 7. As can be seen from figures 7(a) and (b), normal dispersion exists in the
0–1.5 eV energy range. This is consistent with results for ε2 in figure 5. The photon energy
range between 1.5 and 6 eV corresponds to an absorption region. The calculated absorption
coefficients and reflectivities along the x- and z-axes are shown in figure 8. In accordance with
the optical functions calculated and presented above, the absorption starts near 1.5 eV (see
figure 8(a)). In figure 8(b), in addition to the calculated reflectivities, along the x- and z-axes,
experimental data [13] are reproduced.
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Figure 6. Energy-loss functions along the x- and z-axes (polar axis c).

(a) (b)

Figure 7. Refractive indices (a) and extinction coefficients (b) along the x- and z-axes (polar axis
c).

The calculated optical conductivities are illustrated in figure 9(a). The effective number of
valence electrons and the effective dielectric constant are given in figure 9(b). The maximum
values of the optical conductivity appear at about 0.34 μm and 0.4 μm in the directions of the
x- and z-axes, respectively (see figure 9(a)). The effective number of valence electrons per unit
cell, Neff, contributing in the interband transitions, reaches a saturation value at about 9 eV.
This shows that the deep-lying valence orbitals do not participate in the interband transitions
(see figure 9(b)). The effective optical dielectric constant, εeff, shown in figure 9(b) reaches a
saturation value at about 7 eV. The photon energy dependence of εeff obtained by us for SbSI is
a curve which can be separated into two regions. The first is characterized by a rapid rise and
it extends up to 5.0 eV. In the second region the value of εeff rises more smoothly and slowly
and tends to saturation at the energies 7 eV. The contribution to the static dielectric constant
made by optical transitions at photon energies E > E0 can be determined by comparing the
maximum value of εeff with the square of the refractive index n2 measured in the transparency
range [8]. The difference δε = n2 − εeff �= 0 (δε ≈ 1.8) shows the need to allow for the

8



J. Phys.: Condens. Matter 19 (2007) 116207 H Akkus and A M Mamedov

(a) (b)

Figure 8. Absorption coefficients (a) and reflectivities (b) along the x- and z-axes (polar axis c).
(Rexp was measured in the plane perpendicular to the z-axis and the polarization for synchrotron
radiation has the geometry E ⊥ z [13].)

(a) (b)

Figure 9. Optical conductivities along the x- and z-axes (polar axis c) (a) and the effective number
of valence electrons and effective optical dielectric constant (b).

polarizability of deep-lying levels. The difference indicates that a large contribution to the
static dielectric constant is made by interband transitions with E > E0. This means that the
greatest contribution to εeff arises from interband transitions between 1.5 and 7 eV.

4. Conclusions

In the present work, we have made a detailed investigation of the electronic structure and
linear optical properties of paraelectric SbSI using the ab initio pseudopotential method. Our
objective was to apply the density functional methods to the non-polar phase of the ferroelectric
semiconductor SbSI. We have seen that the paraelectric SbSI crystal has an indirect forbidden
gap, and has the smallest direct gap at the S point of the BZ. The total DOS calculation shows
that the valence band is composed of 5s and 5p orbitals of the I atom, 3s and 3p orbitals of the
S atom and 5s orbitals of the Sb atom while the conduction band consists of 5p orbitals of the
Sb atom. We have examined photon energy dependent dielectric functions as well as related
quantities such as absorption coefficients, extinction coefficients, refractive indices, energy-
loss functions, reflectivities and optical conductivities along the x- and z-axes. Lastly, we have
calculated the effective number of valence electrons per unit cell participating in the interband
transitions and the effective optical dielectric function.

9



J. Phys.: Condens. Matter 19 (2007) 116207 H Akkus and A M Mamedov

References
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